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Abstract

Nonlinear free axisymmetric vibration of simply supported isotropic circular plates is investigated by
using the energy method and a multimode approach. In-plane deformation is included in the formulation.
Lagrange’s equations are used to derive the governing equation of motion. Using the harmonic balance
method, the equation of motion is converted into a nonlinear algebraic form. The numerical iterative
method of solution adopted here is the so-called linearized updated mode method, which permits the
authors to obtain accurate results for vibration amplitudes up to three times the plate thickness. The
percentage of participation of each out-of-plane basic function to the deflection shape and to the bending
stress at the plate centre and of each in-plane basic function to the membrane stress at the centre are
calculated in order to determine the minimum number of in- and out-of-plane basic functions to be used in
order to achieve a good accuracy of the model. The nonlinear frequency, the nonlinear fundamental mode
shape and their associated nonlinear bending and membrane stresses are determined at large amplitudes of
vibration. The numerical results obtained here are presented and compared with available published results,
based on various approaches and with the single-mode solution. The limit of validity of the single-mode
approach is also investigated.
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Nomenclature

r; y; z cylindrical coordinates
U ;W in- and out-of-plane displacements

of the middle plane point ðr; y; 0Þ;
respectively

er; ey radial and circumferential strains
Vb;V m;V bending, membrane and total strain

energy, respectively
E Young’s modulus
n Poisson’s ratio of the plate material
r mass per unit volume of the plate

material
a; h radius and thickness of the circular

plate, respectively
D bending stiffness of the plate, ¼

Eh3=12ð1� n2Þ
T kinetic energy
wiðrÞ ith out-of-plane basic function,

W ðr; tÞ ¼ wiðrÞq
w
i ðtÞ

uiðrÞ ith in-plane basic function, Uðr; tÞ ¼
uiðrÞq

u
i ðtÞ

qw
i ith out-of-plane generalized coordi-

nate: qw
i ðtÞ ¼ ai cosðotÞ

qu
i ith in plane generalized coordinate:

qu
i ðtÞ ¼ bi cos

2ðotÞ

pi; po number of in- and out-of-plane
basic functions, respectively

k1
ij ;m

1
ij ; b

1
ijkl general terms of the rigidity tensor,

the mass tensor and the fourth-order
nonlinearity tensor, respectively, as-
sociated with the transverse displa-
cement

k2
ij ;m

2
ij general terms of the rigidity tensor

and the mass tensor, respectively,
associated with the in-plane displa-
cement

cijk general term of the third-order
nonlinearity rigidity tensor repre-
senting the coupling between the
in- and the out-of-plane displace-
ments

b�
ijkl general term of the fourth-order

non-dimensional nonlinearity rigid-
ity tensor taking into account the
influence of the in-plane displace-
ment

d�
ijk general term of the third-order non-

dimensional tensor allowing the
calculation of the kth in-plane con-
tribution coefficient bk

r� non-dimensional radial coordinate,
r� ¼ r=a

l thickness-to-radius ratio of the cir-
cular plate, l ¼ h=a

t non-dimensional time, t ¼

t ðrha4=DÞ
1=2

o;o� frequency and non-dimensional fre-
quency parameter, respectively

bi the ith transverse eigenvalue para-
meter for a simply supported axi-
symmetric circular plate

ðo�
‘ Þi the ith non-dimensional linear nat-

ural frequency of axisymmetric vi-
brations of simply supported
circular plates: ðo�

‘ Þi ¼ b2i
ai the ith in-plane eigenvalue para-

meter for a simply supported im-
movable axisymmetric circular plate

fAg column matrix of out-of-plane con-
tribution coefficients, fAg ¼

½a1a2 . . . apo
	t

½Knl�	 the non-dimensional nonlinear geo-
metrical stiffness matrix

Cn;K Jacobean elliptic function and com-
plete elliptic integral of the first kind

e cubic nonlinearity parameter: e ¼
m=ðw�

1ð0ÞÞ
2; in which m ¼ 2 b�

1111=k1�
11

w�
max maximum non-dimensional vibra-

tion amplitude
s�br surface radial bending stress
s�mr radial membrane stress
� star exponent indicates non-dimen-

sional parameters
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1. Introduction

Thin plate structures are encountered in various modern engineering problems and they are
often subjected to severe dynamic loading. This may result in large vibration amplitudes of these
structures. It is well known that when the amplitude of vibration is of the same order of the
thickness of the plate, a significant geometrical nonlinearity is induced. This induces an increase in
the resonance frequencies and a change in the mode shapes with the amplitude of vibration. The
most widely used nonlinear equations of motion for thin plates are the dynamic analogue of the
von Kármán equations, which were derived by Herrmann in cartesian coordinates [1]. Due to the
complexity of the governing coupled nonlinear partial differential equations involved, no exact
solution is yet known. Hence, each problem has received a special treatment involving some
particular approximations.
In most of the studies carried out on large vibration amplitudes of circular plates, the common

approach has been to use an assumed space or time mode. In the assumed space mode method, a
spatial function which satisfies the related boundary conditions is assumed and Galerkin’s method
is used to eliminate the space variable from the governing equations. The problem is then reduced,
in the case of a one-term expansion (single-mode approach), to the well-known Duffing equation
in time, which may be solved in terms of elliptic functions or using other methods, such as the
harmonic balance method or the perturbation method. This technique has been used to obtain
approximate solutions based on the von Kármán equations with the single-mode approach in
Refs. [2–9]. In the assumed time function method, a simple harmonic function in time is assumed
and is then eliminated from the equation of motion using the Kantorovich averaging procedure.
The resulting nonlinear spatial boundary value problem is solved numerically. This technique has
been used with von Kármán equations in Refs. [10–13]. Some other studies [14–18] were based on
a simplified nonlinear equation, obtained by using Berger’s hypothesis [19]. Also, different
perturbation techniques were used in the study of nonlinear vibrations of circular plates [20–22].
Various problems of nonlinear vibrations of circular plates have been investigated by using finite
element methods [23–30]. In conjunction with the theoretical investigations mentioned above, few
experimental studies were conducted in order to better understand the nonlinear dynamic
behaviour of circular plates [5,31,32].
In most of the continuum approaches cited above, the single-mode assumption permitted the

obtaining of analytical solutions for the amplitude frequency dependence and the nonlinear forced
frequency response function. However, this assumption has been shown both theoretically and
experimentally to be inaccurate for clamped–clamped beams and fully clamped rectangular and
circular plates in Refs. [33–37], since the mode shape thus assumed is amplitude independent and
therefore leads to linear patterns of the bending stress rather than the nonlinear patterns.
Multimode analyses are needed in order to determine accurately the amplitude-dependent
nonlinear frequencies and the associated nonlinear mode shapes, especially for fully clamped
boundaries. A multiple-mode approach (three modes) has been presented in Ref. [38], in which the
steady-state axisymmetric free and forced response of clamped circular plates has been
investigated by using the Galerkin procedure and the harmonic balance method. Very recently,
the geometrically nonlinear free axisymmetric vibrations of clamped circular plates have been
studied by using a multimode model, taking into account the coupling between the higher
vibration modes [36,37]. The main feature of this multimodal model, which is based on
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Hamilton’s principle and spectral analysis, is that it makes the geometrically nonlinear effects
appear, not only via the amplitude frequency dependence, which was the main purpose of most of
the previous studies on nonlinear vibrations, but also via the dependence of the structure
deflection shapes on the amplitude of vibration. This allows quantitative estimates of nonlinear
stresses to be obtained in sensible regions of the structure, which may be of crucial importance in
the fatigue life prediction of structures working in or exposed to a severe environment.
The present study focuses on the geometrically nonlinear free vibration of simply supported

circular plates using a multimodal approach. The mathematical formulation has been established
using Lagrange’s equations and the harmonic balance method. Consequently, the large-amplitude
vibration problem is reduced to a set of nonlinear algebraic equations in terms of the contribution
coefficients of the out-of-plane basic functions only. This set represents a nonlinear eigenvalue
problem, which reduces to the well-known linear eigenvalue problem derived from Rayleigh–Ritz
analysis when the nonlinearity is omitted. The nonlinear eigenvalue problem needs to be solved
iteratively. The nonlinear iterative procedure described in Refs. [39,40], known as the linearized
updated mode method, is used here as a first approach for accurate determination of the nonlinear
resonant frequencies, the deflection shapes and the distributions of the associated membrane and
bending stresses, for the fundamental (axisymmetric) simply supported circular plate nonlinear
mode shape, at various non-dimensional amplitudes. In an investigation of the suitability of the
single-mode approach for the geometrically nonlinear vibrations of a simply supported
immovable circular plate, the iterative solution is compared to the analytical solution based on
the single-mode assumption. A detailed comparison concerning the amplitude frequency
dependence, the bending and membrane stresses has been conducted in order to determine
accurately the range of validity of the single-mode analytical solution.
2. General formulation

2.1. Mathematical model

Consider a circular plate of thin uniform thickness h and radius a that is simply supported along
its edge. The cylindrical coordinate system is chosen such that the middle plane of the plate
coincides with the r y-plane. The origin of the coordinate system is at the centre of the plate with
the z-axis downward in the thickness direction, as shown in Fig. 1. The plate material is assumed
to be elastic, homogeneous and isotropic.
In large-amplitude axisymmetric vibrations of circular plates, the non-vanishing components of

the strain tensor are given by [10]

er ¼
@U

@r
þ
1

2

@W

@r

� �2

� z
@2W

@r2
; ey ¼

U

r
�

z

r

@W

@r
; ð1Þ

where U is the middle plane in-plane radial displacement and W is the out-of-plane transverse
displacement.
The total strain energy, V ; of the circular plate is given as the sum of the strain energy due to

bending (Vb) and the membrane strain energy induced by large deflections (Vm): V ¼ Vb þ Vm:
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Fig. 1. Simply supported circular plate notation.

M. Haterbouch, R. Benamar / Journal of Sound and Vibration 280 (2005) 903–924 907
In the case of axisymmetric vibrations, the bending strain energy of the circular plate is given
by [41]

Vb ¼ pD

Z a

0

@2W

@r2

� �2

þ
1

r2
@W

@r

� �2

þ 2
n
r

@W

@r

@2W

@r2

" #
rdr; ð2Þ

in which D ¼ Eh3=12ð1� n2Þ is the bending stiffness of the plate, and E and n are Young’s
modulus and Poisson’s ratio of the plate material.
In terms of displacements, the expression for the membrane strain energy induced by large

deflections for an axisymmetric circular plate is given by [41]

Vm ¼
12pD

h2

Z a

0

@U

@r

� �2

þ
U2

r2
þ 2n

U

r

@U

@r
þ

@W

@r

� �2 @U

@r
þ
1

4

@W

@r

� �4

þ n
U

r

@W

@r

� �2
" #

rdr: ð3Þ

The total strain energy, V, is then given by

V ¼ pD

Z a

0

@2W

@r2

� �2

þ
1

r2
@W

@r

� �2

þ 2
n
r

@W

@r

@2W

@r2

" #
rdr þ

12pD

h2

Z a

0

@U

@r

� �2

þ
U2

r2

"

þ2n
U

r

@U

@r
þ

@W

@r

� �2 @U

@r
þ n

U

r

@W

@r

� �2

þ
1

4

@W

@r

� �4
#

rdr: ð4Þ

The kinetic energy, T, of the circular plate is

T ¼ prh

Z a

0

@W

@t

� �2

þ
@U

@t

� �2
" #

rdr ð5Þ

an expression in which rotatory inertia is neglected and r is the mass per unit volume of the plate
material.
Using a generalized parameterization and the usual summation convention, one can put

W ðr; tÞ ¼ qw
i ðtÞwiðrÞ; i ¼ 1; . . . ; po;

Uðr; tÞ ¼ qu
i ðtÞ uiðrÞ; i ¼ 1; . . . ; pi; ð6Þ
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where ui and wi are the in-plane and out-of-plane basic functions; qu
i and qw

i are the corresponding
generalized parameters, respectively. pi and po are the number of in- and out-of-plane basic
functions used in the model. Insertion of Eq. (6) into Eqs. (4) and (5) leads to the following
discretized expressions for the kinetic energy T and the total strain energy V:

T ¼ 1
2
½ _qw

i _q
w
j m1

ij þ _qu
i _q

u
j m2

ij	; ð7Þ

V ¼ 1
2
½qw

i qw
j k1

ij þ qw
i qw

j qw
k qw

l b1ijkl þ qw
i qw

j qu
i cijk þ qu

i qu
j k2

ij	: ð8Þ

In these equations, m1
ij ;m

2
ij ; k

1
ij; k

2
ij are the mass and rigidity tensors associated with W and U,

respectively, b1ijkl and cijk are, respectively, a fourth-order and a third-order nonlinearity tensors.
The general terms of these tensors are given by

m1
ij ¼ 2prh

Z a

0

wiwjrdr; m2
ij ¼ 2prh

Z a

0

uiujrdr;

k1
ij ¼ 2pD

Z a

0

d2wi

dr2
d2wj

dr2
þ

1

r2
dwi

dr

dwj

dr
þ
n
r

dwi

dr

d2wj

dr2
þ

n
r

d2wi

dr2
dwj

dr

 !
rdr;

k2
ij ¼

24pD

h2

Z a

0

dui

dr

duj

dr
þ

1

r2
uiuj þ

n
r

dui

dr
uj þ

n
r

ui

duj

dr

� �
rdr;

cijk ¼
24pD

h2

Z a

0

dwi

dr

dwj

dr

duk

dr
þ
n
r

dwi

dr

dwj

dr
uk

� �
rdr;

b1ijkl ¼
6pD

h2

Z a

0

dwi

dr

dwj

dr

dwk

dr

dwl

dr

� �
rdr: ð9Þ

It appears from Eq. (9) that the mass and rigidity tensors are symmetric, and the fourth-order
tensor b1ijkl and the third-order tensor cijk are such that

b1ijkl ¼ b1klij ¼ b1jilk ¼ b1ikjl ; cijk ¼ cjik: ð10Þ

By using Lagrange’s equations and taking into account the properties of symmetry of the tensors
involved, one can obtain the following set of coupled nonlinear differential equations:

d2

dt2
ðqw

i Þm1
ir þ qw

i k1
ir þ 2qw

i qw
j qw

k b1ijkr þ qw
i qu

k cirk ¼ 0; r ¼ 1; . . . ; po;

d2

dt2
ðqu

i Þm2
is þ qu

i k2
is þ

1
2
qw

i qw
j cijs ¼ 0; s ¼ 1; . . . ; pi: ð11Þ

Non-dimensional formulation is introduced by putting

wiðrÞ ¼ hw�
i ðr

�Þ; uiðrÞ ¼ lhu�
i ðr

�Þ; t ¼
rha4

D

� �1=2

t; ð12Þ

where r� ¼ r=a is the non-dimensional radial coordinate and l ¼ h=a is a non-dimensional
geometrical parameter representing the ratio of the plate thickness to its radius. Eq. (11) can be
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written in non-dimensional form as

d2

dt2
ðqw

i Þm1�
ir þ qw

i k1�
ir þ 2qw

i qw
j qw

k b1�ijkr þ qw
i qu

k c�irk ¼ 0; r ¼ 1; . . . ; po;

l2
d2

dt2
ðqu

i Þm2�
is þ qu

i k2�
is þ 1

2
qw

i qw
j c�ijs ¼ 0; s ¼ 1; . . . ; pi: ð13Þ

The m1�
ij ; m2�

ij ; k1�
ij ; k2�

ij ; c�ijk and b1�ijkl terms are non-dimensional tensors related to the dimensional
ones by the following equations:

ðm1
ij ; m2

ijÞ ¼ 2pra2h3 ðm1�
ij ; l

2 m2�
ij Þ;

ðk1
ij ; k2

ij; cijk; b1ijklÞ ¼
2pDh2

a2
ðk1�

ij ; k2�
ij ; c�ijk; b1�ijklÞ: ð14Þ

These non-dimensional tensors are defined by

m1�
ij ¼

Z 1

0

w�
i w�

j r� dr�; m2�
ij ¼

Z 1

0

u�
i u�j r� dr�;

k1�
ij ¼

Z 1

0

d2w�
i

dr�2
d2w�

j

dr�2
þ

1

r�2
dw�

i

dr�

dw�
j

dr�
þ

n
r�
dw�

i

dr�

d2w�
j

dr�2
þ

n
r�
d2w�

i

dr�2
dw�

j

dr�

 !
r� dr�;

k2�
ij ¼ 12

Z 1

0

du�i
dr�

du�
j

dr�
þ

1

r�2
u�

i u�j þ
n
r�
du�i
dr�

u�j þ
n
r�

u�i
du�

j

dr�

� �
r� dr�;

c�ijk ¼ 12

Z 1

0

dw�
i

dr�

dw�
j

dr�
du�

k

dr�
þ

n
r�
dw�

i

dr�

dw�
j

dr�
u�k

� �
r� dr�;

b1�ijkl ¼ 3

Z 1

0

dw�
i

dr�

dw�
j

dr�
dw�

k

dr�
dw�

l

dr�
r� dr�: ð15Þ

Upon neglecting the in-plane inertia, which is an acceptable assumption in most engineering
applications of thin plates [42], the second set of equations in Eq. (13) can be solved for the in-
plane generalized parameter qu

i ; leading to

qu
k ¼ qw

i qw
j d�

ijk; ð16Þ

where d�
ijk ¼ � 1

2
k2�

kl

�1
c�ijl ; is a new third-order tensor expressing the coupling between in-plane and

transverse vibrations, in which k2�
ij

�1
represents the inverse of the tensor k2�

ij : Substituting Eq. (16)
into the first set of Eq. (13) leads to a set of nonlinear differential equations in terms of the qw

i ’s
coefficients only

d2

dt2
ðqw

i Þm1�
ir þ qw

i k1�
ir þ 2qw

i qw
j qw

k b�
ijkr ¼ 0; r ¼ 1; . . . ; po: ð17Þ

Here, b�ijkl is a new fourth-order tensor given by

b�ijkl ¼ b1�ijkl þ
1
2
c�ijnd�

kln; ð18Þ

which means that the term ðc�ijnd�
klnÞ=2 represents the contribution of the in-plane displacement to

the nonlinearity.
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2.2. Methods of solution

Eq. (17) represents a set of coupled Duffing’s equations, for which an exact mathematical
solution can be obtained only in the one-dimensional case corresponding to the single-mode
approximation, in terms of elliptic functions.

2.2.1. Multimode solution
In the multidimensional case, an approximate solution may be obtained by the harmonic

balance method. It is assumed here that harmonic motion exists for moderate finite vibration
amplitudes. Such an assumption has been verified experimentally in Refs. [11,31]. Therefore, the
out-of-plane generalized parameters can be written as

qw
i ðtÞ ¼ ai cosðo� tÞ ¼ ai cosðo tÞ; ð19Þ

where o and o� are the dimensional and the non-dimensional nonlinear frequency parameters,
respectively, which are related by

o� ¼
rha4

D

� �1=2

o: ð20Þ

From Eq. (16), it appears that the in-plane generalized parameters can be written in the form

qu
i ðtÞ ¼ bi cos

2ðo� tÞ ¼ bi cos
2ðo tÞ; ð21Þ

where the in- and out-of-plane contribution coefficients are related by

bk ¼ ai aj d�
ijk: ð22Þ

Substituting Eq. (19) into Eq. (17) and applying the harmonic balance method leads to

ai k1�
ir þ 3

2
aiajak b�

ijkr � o�2ai m1�
ir ¼ 0; r ¼ 1; . . . ; po: ð23Þ

It is to be noted that Eq. (23) is identical to that obtained in Ref. [37] for the nonlinear free
vibrations of clamped immovable circular plates by using Hamilton’s principle and integration
over the range ½0; 2p=o	: The set of nonlinear algebraic equations (23) can be written in a matrix
form as

ð½K1�	 þ ½Knl�	ÞfAg � o�2½M1�	fAg ¼ f0g; ð24Þ

where ½M1�	; ½K1�	 and ½Knl�	 are the non-dimensional mass matrix, the non-dimensional linear
stiffness matrix and the non-dimensional nonlinear geometrical stiffness matrix, respectively.
Each term of the matrix ½Knl�	 is a quadratic function of the column matrix of coefficients
fAg ¼ ½a1a2 . . . apo

	t; and is given by: ðKnl�Þij ¼ ð3=2Þ ak al b�
ijkl : It can be seen that when the

nonlinear term is neglected, the nonlinear eigenvalue problem (24) reduces to the classical
eigenvalue problem

½K1�	fAg ¼ o�2½M1�	fAg; ð25Þ

which is the Rayleigh–Ritz formulation of the linear vibration problem. In the linear case, the
eigenvalue equation (25) leads to a series of eigenvalues and corresponding eigenvectors. In the
nonlinear case, the solution of Eq. (24) should lead to a set of amplitude-dependent eigenvectors,
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with their amplitude-dependent associated eigenvalues. To solve the nonlinear eigenvalue problem
(24), incremental-iterative methods are generally used. The iterative method of solution adopted
here is that used in Refs. [39,43] for fully clamped isotropic and laminated rectangular plates, and
in Ref. [40] for clamped–clamped beams. Very recently, this method of solution has been
successfully used in Ref. [37] in order to determine the first two nonlinear mode shapes of clamped
immovable circular plates. This method consists of solving successive linear eigenvalue problems
by starting from the linear eigenvalue problem (25) until the convergence of the value of the
eigenvalue o�2 is achieved, leading also to the normalized eigenvector fAg; corresponding to the
mode considered, according to the specified amplitude of vibration considered. It is to be noted
that the nonlinear stiffness matrix ½Knl�	 is calculated in each iteration from the scaled eigenvector
according to the specified amplitude of vibration obtained at the centre of the circular plate. For
further details on this numerical iterative procedure, the reader is referred to Refs. [39,40].
For the r0th (here r0 ¼ 1) nonlinear axisymmetric mode and for a given amplitude of vibration

w�
max; the numerical iterative procedure determines accurately the non-dimensional nonlinear

frequency parameter o� and the corresponding normalized eigenvector fAg; which in turn gives
the r0th nonlinear axisymmetric mode shape: w�ðr�Þ ¼ aiw

�
i ðr

�Þ; i ¼ 1; . . . ; po: The corresponding
in-plane shape function, i.e., u�ðr�Þ ¼ biu

�
i ðr

�Þ; i ¼ 1; . . . ; pi; is determined by computing the in-
plane contribution coefficients bi from Eq. (22). Also, the associated nonlinear bending and
membrane stresses can be determined quite easily.

2.2.2. Single-mode solution
The single-mode assumption consists of neglecting all of the coordinates except a single

‘‘resonant’’ coordinate. Thus, it reduces the multi-degree-of-freedom system to a single one. It has
been shown in previous studies that such an assumption may not be very rigorous, with regard to
some effects in nonlinear vibration of structures, such as the increase of curvatures near the
clamps of a clamped–clamped beam [34], or the nonlinear increase of curvatures and bending
stresses near to the edge of clamped circular plates [37]. However, the single-mode approach has
been very often used in the literature [2–9]. This is due to the great simplification it introduces in
the theory on one hand, and on the other hand because the error it introduces in the estimation of
the nonlinear frequency remains very small for a large range of vibration amplitudes, as has been
shown for example in Refs. [37,44]. The purpose here is to give explicit analytical expressions for
the nonlinear frequency, the bending and membrane stresses. The two solutions, namely the
iterative and the single-mode solutions will be compared in Section 3 in order to determine
accurately the ranges of validity of the single-mode approach with respect to the nonlinear
frequency, the bending and membrane stresses.
Applying the one-mode solution to Eq. (17) leads to

m1�
11

d2

dt2
ðqw

1 Þ þ k1�
11 qw

1 þ 2b�
1111 qw

1
3
¼ 0: ð26Þ

This equation can be rewritten as

d2

dt2
ðqw

1 Þ þ o�2
‘ ðqw

1 þ mqw
1
3
Þ ¼ 0; ð27Þ

where o�
‘ ¼ ðk1�

11=m1�
11Þ

1=2 is the non-dimensional fundamental frequency and m ¼ 2b�
1111=k1�

11:
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Assuming that the amplitude of qw
1 ðtÞ is equal to a1 at t ¼ 0 and dqw

1 =dtð0Þ ¼ 0; the exact
mathematical solution of Eq. (27) can be given in terms of the Jacobean elliptic function Cn as [44]

qw
1 ðtÞ ¼ a1 Cnðg t; kÞ; ð28Þ

where g2 ¼ o�2
‘ ð1þ m a21Þ and k2

¼ mðo�2
‘ a21Þ=ð2g

2Þ; in which k is the modulus of the elliptic
function and g may be taken as the ‘‘circular frequency’’. The elliptic function Cnðg t; kÞ is
periodic with a frequency o� ¼ pg=ð2KðkÞÞ; where KðkÞ is the complete elliptic integral of the first
kind. The amplitude frequency relation is then given by

o�

o�
‘

¼
pð1þ m a21Þ

1=2

2KðkÞ
ð29Þ

in which k2
¼ ma21=ð2þ 2ma21Þ:

Using a perturbation method, as in Ref. [44], for small values of a1; the modulus k is also small
and the elliptic function Cnðg t; kÞ can be approximated by cosðo� tÞ: The first approximation of
the exact solution is then given by

o�

o�
‘

� �2

¼ 1þ 3
2
ðb�1111=k1�

11Þa
2
1: ð30Þ

It appears that the solution obtained from the first approximation of the elliptic function solution,
i.e., Eq. (30), is identical to that obtained from Eq. (23), based on the harmonic balance method
when specialized to the one-mode solution.
In terms of the non-dimensional amplitude of vibration w�

max ¼ a1 w�
1ð0Þ; Eq. (30) can be

rewritten as

o�

o�
‘

� �2

¼ 1þ 3
4
e ðw�

maxÞ
2; ð31Þ

where e ¼ m=ðw�
1ð0ÞÞ

2; is the cubic nonlinearity parameter [8].
The in-plane contribution coefficients are now given by

bi ¼ a21 d�
11i ð32Þ

and the in- and out-of-plane shape functions are

u�ðr�Þ ¼ a21 d�
11i u�

i ðr
�Þ; w�ðr�Þ ¼ a1 w�

1ðr
�Þ ð33Þ

from which the non-dimensional membrane and bending stresses can be calculated.
2.3. Numerical details for the simply supported immovable circular plate

The basic functions w�
i to be used in the expansion series of w in Eq. (6) must satisfy all of the

simply supported theoretical boundary conditions, i.e., zero displacement and zero radial flexural
moment along the circular edge. Since the linear problem of free axisymmetric flexural vibrations
of a simply supported circular plate has an analytical solution, the chosen basic functions w�

i were
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taken as the linear free oscillation modes of the simply supported circular plate given by [45]

w�
i r�ð Þ ¼ Ai J0 bi r�

� 	
�

J0 bi

� 	
I0 bi

� 	 I0 bi r�
� 	" #

; ð34Þ

where bi is the ith real positive root of the transcendental equation

J1ðbÞ
J0ðbÞ

þ
I1ðbÞ
I0ðbÞ

¼
2b

1� n
: ð35Þ

Here Jn and In are, respectively, the Bessel and the modified Bessel functions of the first kind and
of order n. The parameter bi is related to the ith non-dimensional linear frequency parameter ðo�

‘ Þi
of the plate by

b2i ¼ ðo�
‘ Þi: ð36Þ

Since Eq. (35) depends on the value of Poisson’s ratio of the plate material, the numerical values
of bi are computed here numerically by solving Eq. (35) for a value of n equal to 0.3. The first six
values are given in Table 1.
The basic functions u�

i to be used in the expansion series of u in Eq. (6) must satisfy the
immovable in-plane boundary condition, i.e. u�

i ðr
� ¼ 1Þ ¼ 0: Here, the expansion is made in terms

of a convenient set of orthonormal functions by putting, as in [37]

u�
i ðr

�Þ ¼ BiJ1ðair
�Þ; ð37Þ

where ai is the ith real positive root of the equation J1ðaÞ ¼ 0; from which the first six numerical
values of ai are computed and are listed in Table 1.
The in- and out-of-plane basic functions are normalized in such a manner that

m1�
ij ¼

Z 1

0

w�
i w�

j r�dr� ¼ dij ;

m2�
ij ¼

Z 1

0

u�
i u�

j r�dr� ¼ dij : ð38Þ

The basic functions w�
i and u�i ði ¼ 1; . . . ; 6Þ are shown in Figs. 2 and 3, respectively. The

parameters k1�
ij ; k2�

ij ; c�ijk and b1�ijkl involved in the model were computed numerically by using
Simpson’s rule with 160 steps in the range ½0; 1	:
Table 1

Numerical values of the simply supported immovable circular plate parameters ai and bi intervening in the ith in- and

out-of-plane basic functions, respectively, for i ¼ 1; . . . ; 6

i ai bi

1 3.83170597020751 2.22151953459224

2 7.01558666981562 5.45160570218317

3 10.17346813506272 8.61139102796216

4 13.32369193631422 11.76087250211648

5 16.47063005087763 14.90687907946484

6 19.61585851046824 18.05129413941753
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Fig. 2. Axisymmetric natural modes of vibration for a simply supported circular plate w�
i for i ¼ 1; . . . ; 6 ðn ¼ 0:3).
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Fig. 3. The first six in-plane basic functions of a simply supported immovable circular plate.
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3. Numerical results and discussion

3.1. Convergence study of the spectral expansion

The minimum number of in- and out-of-plane basic functions to be used in the present
multimodal model, in order to achieve a good accuracy for large vibration amplitudes, have to be
investigated first. It is to be noted here that the convergence criteria should not be restricted only
to the nonlinear frequency, as was the case for example in Refs. [39,43,46], but must also
involve the nonlinear bending and membrane stresses, in order to obtain reliable results with
respect to engineering purposes. Concerning the fundamental nonlinear frequency, the
participation of each linear mode to the maximum deflection can be defined by the following
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formula due to Shi et al. [47,48]:

Participation from mode i ¼ 100
jaijPpo

r¼1jarj
: ð39Þ

In Table 2, the participation of each out-of-plane basic function to the first nonlinear mode shape
of a simply supported immovable circular plate has been computed numerically for various
maximum non-dimensional amplitudes, by using pi ¼ po ¼ 6: For each maximum non-
dimensional amplitude, obtained at the plate centre, the corresponding nonlinear frequency is
given and compared with the single-mode solution. It can be seen that the single-mode approach
yields accurate fundamental frequencies for maximum non-dimensional amplitudes up to 1.5. For
much greater amplitudes of vibrations, at least a solution based on two linear transverse modes is
required. The contributions of higher modes appear to be relatively small. However, their effects
on the nonlinear bending stress estimates at the centre of the plate may not be negligible, since
they intervene via their second derivatives, which are proportional to b2i : In order to examine this
effect, another formula due to Azrar et al. [49] may be used to estimate the percentage of
participation of each out-of-plane basic function to the non-dimensional maximum bending stress
at the centre of the plate:

Participation of w�
i to s�brð0Þ ¼ 100

jaijb
2
iPpo

r¼1jarjb
2
r

: ð40Þ

The percentages of participation of each out-of-plane basic function to the non-dimensional
maximum bending stress at the centre, s�brð0Þ; for the fundamental nonlinear mode are given in
Table 3. It can be seen that while the percentage of participation of the first out-of-plane basic
function to the first nonlinear mode given in Table 2 remains predominant and greater than 99%
for values of the non-dimensional amplitude w�

max up to 1.5, its percentage of participation
to the non-dimensional maximum bending stress at the centre is only 95.10% and decreases to
about 90% for w�

max ¼ 3: This shows that the influence of higher modes increases with the
amplitude of vibration and that the consideration of the modal participation to the nonlinear
Table 2

Frequency ratio of free vibration and modal participation of a simply supported immovable circular plate and

comparison with the single mode solution ð42Þ

W �
max o�

nl=o
�
l Modal participation (%)a Single-mode solution (42)

a1 a2 a3 a4 a5 a6

0.2 1.0268 99.9793 0.0202 0:4114E203 0:4234E204 0:7703E205 0:2219E205 1.0268

0.5 1.1577 99.8762 0.1208 0:2683E202 0:2714E203 0:4990E204 0:1373E204 1.1572

1.0 1.5401 99.5702 0.4167 0:1167E201 0:1159E202 0:2127E203 0:5726E204 1.5351

1.5 2.0288 99.2072 0.7618 0:2751E201 0:2784E202 0:5115E203 0:1355E203 2.0130

2.0 2.5664 98.8746 1.0707 0:4830E201 0:5148E202 0:9561E203 0:2511E203 2.5350

2.5 3.1284 98.6020 1.3170 0:7098E201 0:8092E202 0:1534E202 0:4026E203 3.0787

3.0 3.7037 98.3881 1.5046 0:9308E201 0:1138E201 0:2218E202 0:5855E203 3.6344

aParticipation of the ith out-of-plane basic function w�
i to the deflection shape given by Eq. (39).
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Table 3

Non-dimensional bending stress at the centre of a simply supported immovable circular plate and modal contributions

at various amplitudes of vibration

W �
max s�brð0Þ Modal participation (%)a

a1b
2
1 a2b

2
2 a3b

2
3 a4b

2
4 a5b

2
5 a6b

2
6

0.2 0.3790 99.8703 0.1218 0:6175E202 0:1185E202 0:3465E203 0:1464E203

0.5 0.9410 99.2267 0.7225 0:4005E201 0:7557E202 0:2232E202 0:9006E203

1.0 1.8445 97.3306 2.4531 0.1715 0:3176E201 0:9362E202 0:3696E202

1.5 2.7034 95.1004 4.3979 0.3962 0:7480E201 0:2208E201 0:8576E202

2.0 3.5326 93.0564 6.0686 0.6831 0.1358 0:4052E201 0:1560E201

2.5 4.3484 91.3641 7.3488 0.9883 0.2101 0:6401E201 0:2463E201

3.0 5.1603 90.0123 8.2897 1.280 0.2917 0:9135E201 0:3536E201

aParticipation of the ith out-of-plane basic function w�
i to the bending stress at the plate centre given by Eq. (40).
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mode, i.e. Eq. (39), may lead to inaccurate conclusions. From Table 3, it can be seen that at least
four out-of-plane basic functions (po ¼ 4) must be used for accurate determination of nonlinear
bending stresses. In order to determine the minimum number of in-plane basic functions to be
implemented in the model, a further formula is proposed here by considering the participation of
each in-plane basic function to the membrane stress at the centre, as follows:

Participation of u�
i to s�mrð0Þ ¼ 100

jbijaiPpi

r¼1jbrjar

: ð41Þ

Formula (41) is based on the fact that each in-plane function u�i intervenes in the non-dimensional
membrane stress at the plate centre via its first derivative, which is proportional to ai: The
percentages of participation of the in-plane functions to the non-dimensional membrane stress at
the centre obtained using the new formula are summarized in Table 4. It can be seen that even for
relatively small vibration amplitudes, the higher in-plane basic functions have a non-negligible
contribution. For accurate determination of the membrane stress estimates for nondimensional
vibration amplitudes up to three times the plate thickness, at least four in-plane basic functions
are needed (po ¼ 4).
In conclusion, accurate results for the geometrically nonlinear behaviour of simply supported

immovable circular plates can be achieved by taking pi ¼ po ¼ 4: For the single-mode approach,
numerical results are obtained by letting po ¼ 1 and pi ¼ 4:

3.2. Amplitude frequency dependence

The fundamental frequency ratios o�
n‘=o

�
‘ at various maximum non-dimensional amplitudes

w�
max for a simply supported immovable circular plate are shown in Table 5. Comparison is made

between results obtained by the multidimensional model, results obtained using the single-mode
solutions, i.e., Eqs. (29) and (31), results obtained using an elliptic integral solution [2],
and the finite element method [23,28]. It may be noted that the present results obtained by
the multidimensional model agree very well with the elliptic solution [2] for maximum
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Table 4

Non-dimensional membrane stress at the centre of a simply supported immovable circular plate and modal

contributions at various amplitudes of vibration

W �
max s�mrð0Þ Modal participation (%)a

b1a1 b2a2 b3a3 b4a4 b5a5 b6a6

0.2 0.0359 98.6428 0.8513 0.1378 0.1552 0.1209 0:9204E201

0.5 0.2248 99.1206 0.3663 0.1441 0.1556 0.1211 0:9220E201

1.0 0.9014 98.3867 1.0621 0.1851 0.1559 0.1195 0:9076E201

1.5 2.0345 96.6702 2.6769 0.2844 0.1617 0.1182 0:8858E201

2.0 3.6276 95.1005 4.0827 0.4325 0.1778 0.1193 0:8711E201

2.5 5.6819 93.8013 5.1839 0.6016 0.2032 0.1234 0:8660E201

3.0 8.1975 92.7630 6.0159 0.7694 0.2347 0.1300 0:8700E201

aParticipation of the ith in-plane basic function u�i to the membrane stress at the plate centre given by Eq. (41).
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non-dimensional amplitudes up to once the plate thickness, with a maximum difference of only
0.4%. The difference is more pronounced with numerical results obtained by the finite element
method and linearizing procedure [28]. The present single-mode exact mathematical solution,
given by Eq. (29), can be obtained by using the following numerical values of the simply
supported immovable circular plate fundamental nonlinear mode shape modal parameters: k1�

11 ¼

24:355696 and b�1111 ¼ 154:540891: Since w�
1ð0Þ ¼ 2:648772; the computed value of the nonlinear

parameter e appearing in Eq. (31) is 1.80877, which is slightly different from that obtained in Ref.
[8], i.e., e ¼ 1:85065: This is due to the different choices of the spatial shape function. In Ref. [8],
the authors used a transverse displacement function w�ðr�Þ ¼ 1� r�2½ð6þ 2nÞ þ ð1þ nÞr�2	=ð5þ
nÞ: However, the present solution is thought to be more accurate since it is based on the exact
linear mode shape. The present amplitude–frequency dependence based on the single-mode
approach and the harmonic balance method is therefore given by

o�

o�
‘

¼ ½1þ 1:35658 ðw�
maxÞ

2
	1=2: ð42Þ

From Table 5, it is seen clearly that there are very small discrepancies between numerical results
obtained by the multidimensional model and the single-mode solution (42) at large vibration
amplitudes. The relative difference is only 1.22% at w�

max ¼ 2:0 and about 2% at w�
max ¼ 3:0: The

influence of higher modes on the fundamental nonlinear frequency of a simply supported
immovable circular plate can thus be neglected for maximum non-dimensional amplitudes up to
twice the plate thickness.

3.3. Amplitude dependence of the fundamental nonlinear axisymmetric mode shape of simply

supported immovable circular plates

Previous studies have shown that the mode shapes of beam-like and plate-like structures are
amplitude dependent [10,34–37,39]. This effect is illustrated in the present case in Fig. 4, in which
the normalized fundamental nonlinear mode shape of a simply supported immovable circular
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Table 5

Frequency ratios of free vibration of a simply supported immovable circular plate

Present results

W �
max Iterative

solution

Eq. (42) Elliptic

integral

F.E.M.+

Lin. [28]

F.E.M.+

Lin. [23]

Elliptic

integral

Perturbation

[8]

(pi ¼ po ¼ 4) ðpo ¼ 1; pi ¼ 4Þ (Eq. (29)) [2,28]

0.2 1.0268 1.0268 1.0267 1.0179 1.0263 1.0273 1.0274

0.4 1.1034 1.1032 1.1025 1.0700 1.1002 1.1047 1.1055

0.5 1.1577 1.1572 1.1557 — — — —

0.6 1.2209 1.2200 1.2172 1.1518 1.2105 1.2217 1.2246

0.8 1.3693 1.3668 1.3606 1.2577 1.3455 1.3677 1.3741

1.0 1.5401 1.5351 1.5244 1.3826 1.4966 1.5342 1.5452

1.5 2.0288 2.0130 1.9887 — — — —

2.0 2.5664 2.5350 2.4962 — — — —

2.5 3.1285 3.0787 3.0257 — — — —

3.0 3.7038 3.6344 3.5674 — — — —
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Fig. 4. Normalized radial sections of the fundamental linear and nonlinear mode shape of a simply supported

immovable circular plate at various non-dimensional amplitudes. L, linear mode; 1, 2, 3, nonlinear mode shapes at

amplitudes w�
max ¼ 1:0; 2.0 and 3.0, respectively.
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plate is plotted for various values of the maximum non-dimensional amplitudes w�
max: It can be

seen clearly that the four curves are distinguishable, which means that the fundamental mode
shape is amplitude dependent. Also, the general shape of the mode becomes flatter near to the
centre of the circular plate with the increase in the amplitude of vibration. According to this fact,
it can be expected that the nonlinear bending stress near to the plate centre will not increase as
much as it does in the linear theory. This is due to the flattening of the shape which reduces the
rate of increase of the curvature of the deformed shape compared to the linear mode shape. Such a
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situation has been encountered for a clamped–clamped beam [50], for fully clamped isotropic
rectangular plates [39] and in the case of a clamped immovable circular plate [37].
3.4. Analysis of the radial bending and membrane stress distributions associated with the
fundamental nonlinear axisymmetric mode shape

As shown previously, the present multimodal model enables one not only to determine the
amplitude–frequency dependence, but also to determine the deformation of the mode shapes due
to the geometrical nonlinearity. From the strength point of view, the accurate stress predictions of
a structure undergoing large-amplitude vibration is sometimes more important than the
prediction of resonant frequencies and mode shapes [39]. Fig. 5 shows the nondimensional
surface radial bending stress distributions associated with the fundamental nonlinear mode shape
of the simply supported circular plate, for various values of the vibration amplitude. It can be seen
that the rate of increase of the bending stress near to the centre of the plate decreases as the
amplitude increases. This fact is clearly shown in Fig. 6, in which the non-dimensional surface-
bending stress at the centre is compared with the single-mode solution (equivalent also to the
linear one). Also, at a maximum non-dimensional amplitude w�

max ¼ 1; the difference between the
linear and nonlinear maximum bending stress estimates obtained at the centre of the plate is only
about 2.9% and increases to about 5.3% for w�

max ¼ 1:5: The analytical solution of the maximum
non-dimensional radial bending stress, obtained at the plate centre, from the single-mode
approach is given by

s�brð0Þ ¼ 1:897445w�
max: ð43Þ

Fig. 7 displays the non-dimensional radial membrane stress results, associated with the
fundamental nonlinear mode shape at the centre and at the edge of the circular plate. In this
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Fig. 5. Non-dimensional radial bending stress distribution associated with the simply supported immovable circular

plate fundamental nonlinear mode shape at various non-dimensional amplitudes. 1, w�
max ¼ 0:5; 2, w�

max ¼ 1:0; 3,
w�
max ¼ 2:0; 4, w�

max ¼ 3:0:
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Fig. 6. Effect of large vibration amplitudes on the non-dimensional surface radial bending stress associated with the

fundamental non-linear mode shape at the centre of a simply supported immovable circular plate. 1, Multimode

solution; 2, linear (or single mode) solution.
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Fig. 7. Effect of large vibration amplitudes on the non-dimensional radial membrane stress associated with the

fundamental nonlinear mode shape at the centre and at the edge of a simply supported immovable circular plate. 1,

Multimode solution; 2, single-mode solution.
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figure, the solutions obtained by the single-mode approach are also plotted. Examination of
these curves shows a rapid increase in the membrane stress with increasing the amplitude
of vibration, especially at the plate centre. It may be noted also that the single-mode approach
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gives very good estimates of the membrane stress. The analytical solution of the maximum non-
dimensional radial membrane stress, obtained at the plate centre, from the single-mode approach
is given by

s�mrð0Þ ¼ 0:897975 ðw�
maxÞ

2: ð44Þ

The non-dimensional radial membrane stress distributions associated with the fundamental
nonlinear mode shape are plotted in Fig. 8, for various values of the non-dimensional vibration
amplitude. It can be seen that the membrane stress can be neglected at small vibration amplitudes.
For example, the maximum non-dimensional radial membrane stress, obtained at the centre of the
plate, for a maximum non-dimensional amplitude w�

max ¼ 0:5; is about 6.2% of the membrane
stress, at the same location, for w�

max ¼ 2:0; and only 2.7% for w�
max ¼ 3:0: Furthermore, the

maximum membrane stress for an amplitude of vibration equal to twice the plate thickness
exceeds 50% of the maximum total stress and is about 61% for w�

max ¼ 3:0: This indicates that the
membrane stress is very important in stress analysis and should not be neglected in engineering
design of large deflected structures.
It is to be noted here that the present nonlinear results for the bending and membrane stresses

obtained by the multimodal model and depicted in Figs. 6 and 7, corresponding to the simply
supported immovable circular plates fundamental nonlinear mode shape, are in very good
agreement with those obtained in Ref. [12] for non-dimensional amplitudes up to 2 (see Figs. 5
and 6 in this reference). In Ref. [12], von Kármán equations and the Kantorovich method were
used, and numerical results were obtained by solving numerically a two-point boundary value
problem. However, the present model, which leads to the numerical solution of a nonlinear
eigenvalue problem, is quite interesting, due to its simplicity.
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Fig. 8. Non-dimensional radial membrane stress distribution associated with the simply supported immovable circular

plate fundamental non-linear mode shape for various non-dimensional amplitudes. 1, w�
max ¼ 0:5; 2, w�

max ¼ 1:0; 3,
w�
max ¼ 2:0; 4, w�

max ¼ 3:0:
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4. Conclusions

The geometrically nonlinear axisymmetric free vibration of a simply supported immovable thin
isotropic circular plate has been examined theoretically in order to determine the effects of large
vibration amplitudes on the fundamental axisymmetric mode shape and the corresponding
natural nonlinear frequencies and associated membrane and bending stress distributions. The
governing equations have been derived by using Lagrange’s equations and the harmonic balance
method. The in-plane deformation has been taken into account. When the in-plane inertia is
neglected, the theory reduces the nonlinear free vibration problem to the solution of a set of
nonlinear algebraic equations, in terms of the contribution coefficients of the transverse
displacement only. This set of equations represents a nonlinear eigenvalue problem, which has
been solved iteratively for each specified amplitude of vibration by the linearized updated mode
method. The convergence study, based on determination of the modal participation to the
deflection shape and to the non-dimensional bending and membrane stresses at the centre of the
plate, has shown that accurate estimates of dynamic properties of geometrically nonlinear simply
supported immovable circular plates can be achieved by using four in- and out-of-plane basic
functions (pi ¼ po ¼ 4).
Considering the results obtained, a hardening spring effect has been observed. Numerical results

obtained here for the amplitude–frequency dependence are in good agreement with previous
available results. It has also been shown that the geometrical nonlinearity induces a deformation of
the fundamental nonlinear mode shape with the amplitude of vibration. In particular, as the
amplitude of vibration increases, the mode shape becomes flatter near to the centre of the plate. As a
direct consequence, the bending stresses near to the centre increase relatively slowly with the
increase of the amplitude of vibration. The stress analysis has also shown a rapid increase of the
membrane stress with increasing amplitude of vibration and a significant contribution of the
membrane stress to the total stress at large vibration amplitudes. This indicates that the membrane
stress is very important in stress analysis and should not be neglected in the engineering design of
large deflected structures. Throughout the paper, the iterative (multimodal) solution has been
compared to the single-mode approach solution. It has been found that the resonant nonlinear
frequencies predicted by the single-mode approach are in good agreement with the iterative solution
for a wide range of vibration amplitudes up to twice the plate thickness. It has also been shown that
the single-mode approach gives accurate estimates of the maximum membrane stress. The only
problem with the single-mode approach is that it is not able to predict the deformation of the mode
shape of the simply supported immovable circular plate, which induces over-estimated maximum
bending stresses. This limits the range of validity of this approach. As a conclusion, the single-mode
approach is suitable for engineering design of simply supported immovable circular plates
undergoing vibrations of finite amplitudes up to once their thickness.
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